

## Министерство образования и науки Самарской области Поволжское управление

## ГБОУ СОШ пос. Черновский

государственное бюджетное общеобразовательное учреждение Самарской области средняя общеобразовательная школа имени В.Д. Лёвина пос. Черновский муниципального района Волжский Самарской области

Рассмотрено на заседании ШМО Протокол № 1 от 15.06.2020 г. Руководитель ШМО Карнаухова М.В. Протокол педагогического Совета № 1 от 25.08.2020 г.

«Удверждаю» Директор ГБОУ СОШ Э., пос. Черновский

> У Чигарева А.А. В августа 2020 г.

## Рабочая программа по предмету *Химия* (углубленный уровень)

## для 10 -11 классов

## ПРОГРАММА, на основе которой составлена рабочая программа:

Химия. Методические рекомендации. Рабочая программа. Предметная линия учебников С.А. Пузакова, Н.В. Машниной, В.А. Попкова. 10-11 классы. Учебное пособие для общеобразовательных организаций: углубленный уровень. М.Н. Барышова – М., Просвещение, 2017 г.

**СОСТАВИТЕЛЬ РАБОЧЕЙ ПРОГРАММЫ**: Карнаухова Марина Викторовна, учитель химии и биологии первой квалификационной категории.

КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ: 102 часа/204 часа (2 года)

КОЛИЧЕСТВО ЧАСОВ ПО УЧЕБНОМУ ПЛАНУ: 3 часа в неделю

## 2020 год

## 10-11 классы

Деятельность учителя в обучении химии в средней (полной) школе должна быть направлена на достижение обучающимися следующих *личностных результатов*:

- 1) в ценностно-ориентационной сфере *осознание* российской гражданской идентичности, патриотизма, чувства гордости за российскую химическую науку;
- 2) в трудовой сфере *готовность* к осознанному выбору дальнейшей образовательной траектории в высшей школе, где химия является профилирующей дисциплиной;
- 3) в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью, готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни; сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности; формирование навыков экспериментальной и исследовательской деятельности; участие в публичном представлении результатов самостоятельной познавательной деятельности; участие в профильных олимпиадах различных уровней в соответствии с желаемыми результатами и адекватной самооценкой собственных возможностей;
- 4) в сфере здоровьесбережения *принятие и реализация* ценностей здорового и безопасного образа жизни, *неприятие* вредных привычек (курения, употребления алкоголя, наркотиков) благодаря знанию свойств наркологических и наркотических веществ; соблюдение правил техники безопасности в процессе работы с веществами, материалами в учебной (научной) лаборатории и на производстве.

**Метапредметными результатами** освоения выпускниками ступени среднего (полного) общего образования курса химии являются:

- 1) *использование* умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, наблюдение, измерение, проведение эксперимента, моделирование, исследовательская деятельность) для изучения различных сторон окружающей действительности;
- 2) *владение* основными интеллектуальными операциями: формулировка гипотез, анализ и синтез, сравнение и систематизация, обобщение и конкретизация, выявление причинно-следственных связей и поиск аналогов;
- 3) познание объектов окружающего мира от общего через особенное к единичному;
- 4) умение генерировать идеи и определять средства, необходимые для их реализации;
- 5) умение определять цели и задачи деятельности, выбирать средства реализации цели и применять их на практике;
- 6) *использование* различных источников для получения химической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата;
- 7) *умение* продуктивно общаться и взаимодействовать в процессе совместной деятельности, учитывать позиции других участников деятельности, эффективно разрешать конфликты;
- 8) *готовность* и способность к самостоятельной информационно-познавательной деятельности, включая умение ориентироваться в различных источниках информации, критически оценивать и интерпретировать информацию, получаемую из различных источников;
- 9) умение использовать средства информационных и коммуникационных технологий (далее ИКТ) в решении когнитивных, коммуникативных и организационных задач с соблюдением

- требований эргономики, техники безопасности, гигиены, ресурсосбережения, правовых и этических норм, норм информационной безопасности;
- 10) *владение* языковыми средствами, включая и язык химии умение ясно, логично и точно излагать свою точку зрения, использовать адекватные языковые средства, в том числе и символьные (химические знаки, формулы и уравнения).

*Предметными результатами* изучения химии на углублённом уровне на ступени среднего (полного) общего образования являются:

- 1) знание (понимание) характерных признаков важнейших химических понятий: вещество, химический элемент, атом, молекула, относительные атомные и молекулярные массы, ион, изотопы, химическая связь (ковалентная полярная и неполярная, ионная, металлическая, водородная), электроотрицательность, аллотропия, валентность, степень окисления, моль, молярная масса, молярный объем, вещества ионного, молекулярного и немолекулярного строения, растворы, электролиты и неэлектролиты, электролитическая диссоциация, гидролиз, окислитель и восстановитель, окисление и восстановление, электролиз, скорость химической реакции, катализаторы и катализ, обратимость химических реакций, химическое равновесие, смещение равновесия, тепловой эффект реакции, углеродный скелет, функциональная группа, изомерия (структурная и пространственная) и гомология, основные типы (соединения, разложения, замещения, обмена), виды (гидрирования и дегидрирования, гидратации и дегидратации, полимеризации и деполимеризации, поликонденсации и изомеризации, каталитические и некаталитические, гомогенные и гетерогенные) и разновидности (ферментативные, горения, этерификации, крекинга, риформинга) реакций в неорганической и органической химии, полимеры, биологически активные соединения;
- 2) выявление взаимосвязи химических понятий для объяснения состава, строения, свойств отдельных химических объектов и явлений;
- 3) применение основных положений химических теорий: теории строения атома и химической связи, периодического закона и периодической системы химических элементов Д. И. Менделеева, теории электролитической диссоциации, протонной теории, теории строения органических соединений, закономерностей химической кинетики для анализа состава, строения и свойств веществ и протекания химических реакций;
- 4) *умение классифицировать* неорганические и органические вещества по различным основаниям;
- 5) установление взаимосвязей между составом, строением, свойствами, практическим применением и получением важнейших веществ;
- б) *знание основ химической номенклатуры* (тривиальной и международной) *и умение* назвать неорганические и органические соединения по формуле, и наоборот;
- 7) определение: валентности, степени окисления химических элементов, зарядов ионов; видов химических связей В соединениях и типов кристаллических решёток; пространственного строения молекул; типа гидролиза и характера среды водных растворов и восстановителя; процессов окисления восстановления, окислителя И принадлежности веществ к различным классам неорганических и органических соединений; гомологов и изомеров; типов, видов и разновидностей химических реакции в неорганической и органической химии;
- 8) умение характеризовать:
- -s-, p- и d-элементы по их положению в периодической системе Д. И. Менделеева;

- общие химические свойства простых веществ металлов и неметаллов;
- химические свойства основных классов неорганических и органических соединений в плане общего, особенного и единичного;

#### 9) объяснение:

- зависимости свойств химических элементов и их соединений от положения элемента в периодической системе Д. И. Менделеева;
- природы химической связи (ионной, ковалентной, металлической, водородной);
- зависимости свойств неорганических и органических веществ от их состава и строения;
- сущности изученных видов химических реакций: электролитической диссоциации, ионного обмена, окислительно-восстановительных;
- влияния различных факторов на скорость химической реакции и на смещение химического равновесия;
- механизмов протекания реакций между органическими и неорганическими веществами;
  10) умение:
- составлять уравнения окислительно-восстановительных реакций с помощью метода электронного баланса;
- проводить расчёты по химическим формулам и уравнениям;
- проводить химический эксперимент (лабораторные и практические работы) с соблюдением требований к правилам техники безопасности при работе в химическом кабинете (лаборатории).

## Планируемые результаты изучения учебного предмета «Химия» на уровне среднего общего образования:

#### Выпускник на углублённом уровне научится:

- понимать химическую картину мира как составную часть целостной научной картины мира;
- раскрывать роль химии и химического производства как производительной силы современного общества;
- формулировать значение химии и её достижений в повседневной жизни человека;
- устанавливать взаимосвязи между химией и другими естественными науками;
- формулировать периодический закон Д. И. Менделеева и закономерности изменений в строении и свойствах химических элементов и образованных ими веществ на основе периодической системы как графического отображения периодического закона;
- формулировать основные положения теории химического строения органических соединений А. М. Бутлерова, раскрывать основные направления этой универсальной теории
  зависимости свойств веществ не только от химического, но также и от электронного и пространственного строения и иллюстрировать их примерами из органической и неорганической химии;
- аргументировать универсальный характер химических понятий, законов и теорий для объяснения состава, строения, свойств и закономерностей объектов (веществ, материалов и процессов) органической и неорганической химии;
- характеризовать s-, p- и d-элементы по их положению в периодической системе Д. И. Менделеева;

- классифицировать химические связи и кристаллические решётки, объяснять механизмы их образования и доказывать единую природу химических связей (ковалентной, ионной, металлической, водородной);
- объяснять причины многообразия веществ на основе природы явлений изомерии, гомологии, аллотропии;
- классифицировать химические реакции в неорганической и органической химии по различным основаниям и устанавливать специфику типов реакций от общего через особенное к единичному;
- характеризовать гидролиз как специфичный обменный процесс и раскрывать его роль в живой и неживой природе;
- характеризовать электролиз как специфичный окислительно-восстановительный процесс и его практическое значение;
- характеризовать коррозию металлов как окислительно-восстановительный процесс и предлагать способы защиты от неё;
- описывать природу механизмов химических реакций, протекающих между органическими и неорганическими веществами;
- классифицировать неорганические и органические вещества по различным основаниям;
- характеризовать общие химические свойства важнейших классов неорганических и органических соединений в плане от общего через особенное к единичному;
- использовать знаковую систему химического языка для отображения состава (химические формулы) и свойств (химические уравнения) веществ;
- использовать правила и нормы международной номенклатуры для названий веществ по формулам и, наоборот, для составления молекулярных и структурных формул соединений по их названиям;
- знать тривиальные названия важнейших в бытовом и производственном отношении неорганических и органических веществ;
- характеризовать свойства, получение и применение важнейших представителей типов и классов органических соединений (предельных, непредельных и ароматических углеводородов, кислородсодержащих и азотсодержащих соединений, а также биологически активных веществ);
- устанавливать зависимость экономики страны от добычи, транспортировки и переработки углеводородного сырья (нефти, каменного угля и природного газа);
- экспериментально подтверждать состав и свойства важнейших представителей изученных классов неорганических и органических веществ с соблюдением правил техники безопасности для работы с химическими веществами и лабораторным оборудованием;
- характеризовать скорость химической реакции и её зависимость от различных факторов;
- описывать химическое равновесие и предлагать способы его смещения в зависимости от различных факторов;
- производить расчёты по химическим формулам и уравнениям на основе количественных отношений между участниками химических реакций;
- характеризовать важнейшие крупнотоннажные химические производства (серной кислоты, аммиака, метанола, переработки нефти, коксохимического производства, важнейших металлургических производств) с точки зрения химизма процессов, устройства важнейших аппаратов, научных принципов производства, экологической и экономической целесообразности;

 соблюдать правила экологической безопасности во взаимоотношениях с окружающей средой при обращении с химическими веществами, материалами и процессами.

## Выпускник на углублённом уровне получит возможность научиться:

- использовать методы научного познания при выполнении проектов и учебноисследовательских задач химической тематики;
- прогнозировать строение и свойства незнакомых неорганических и органических веществ на основе аналогии;
- прогнозировать течение химических процессов в зависимости от условий их протекания и предлагать способы управления этими процессами;
- устанавливать внутрипредметные взаимосвязи химии на основе общих понятий, законов и теорий органической и неорганической химии и межпредметные связи с физикой (строение атома и вещества) и биологией (химическая организация жизни и новые направления в технологии био- и нанотехнологии);
- раскрывать роль полученных химических знаний в будущей учебной и профессиональной деятельности;
- проектировать собственную образовательную траекторию, связанную с химией, в зависимости от личных предпочтений и возможностей отечественных вузов химической направленности;
- аргументировать единство мира веществ установлением генетической связи между неорганическими и органическими веществами;
- владеть химическим языком как фактором успешности в профессиональной деятельности;
- характеризовать становление научной теории на примере открытия периодического закона и теории строения органических и неорганических веществ;
- принимать участие в профильных конкурсах (конференциях, олимпиадах) различного уровня, адекватно оценивать результаты такого участия и проектировать пути повышения предметных достижений;
- критически относиться к псевдонаучной химической информации, получаемой из разных источников;
- понимать глобальные проблемы, стоящие перед человечеством
  (экологические, энергетические, сырьевые), и предлагать пути их решения, в том числе и с помощью химии.

## 2.Содержание учебного предмета «Химия». Углубленный уровень.

3 часа в неделю, 102 ч. в года

Курс делится на две части соответственно годам обучения: органическую химию (10 класс) и общую химию (11 класс).

*Курс 10 класса* начинается со знакомства с предметом органической химии, изучения теории строения органических соединений А. М. Бутлерова и гибридизации атомных орбиталей. Затем рассматриваются классификация органических соединений, принципы их номенклатуры, а также классификация реакций в органической химии.

Первоначальные теоретические знания далее многократно закрепляются и развиваются при изучении классов органических соединений от углеводородов до азотсодержащих соединений и полимеров.

Такое построение курса позволяет в полной мере не только широко использовать дедуктивный подход в обучении химии 10 класса, но и реализовать идею генетической связи между классами органических соединений.

Особое внимание в курсе органической химии уделено сложным для понимания вопросам: взаимному влиянию атомов в молекулах, в том числе для предсказания свойств соединений; механизмам и закономерностям протекания химических реакций, что необходимо для прогнозирования продуктов; пространственному строению углеводов, аминов, аминокислот, белков и нуклеиновых кислот.

*Курс 11 класса* начинается с рассмотрения сложного строения атома на основе квантовомеханических представлений о строении его ядра и электронной оболочки, а также ядерных реакций. Такая теоретическая база позволяет на другом уровне изучить периодический закон и периодическую систему химических элементов Д. И. Менделеева и ещё раз оценить его научный подвиг, на несколько десятилетий опередившего научную мысль.

Затем изучается строение вещества, основные типы химической связи. Знания учащихся «химии в статике» дополняются сведениями о комплексных соединениях и дисперсных системах. Логично далее рассматриваются такие гомогенные системы, как растворы и способы выражения концентрации в них.

Изучение основ химической термодинамики, понятий об энтальпии и энтропии, законов Гесса, позволяют на более высоком уровне изучить закономерности протекания химических реакций и физико-химических процессов.

Химические реакции в растворах рассматриваются также на новом теоретическом уровне после введения понятия о водородном показателе и изучения протолитической теории кислот и оснований. Обобщаются сведения о неорганических и органических кислотах и основаниях в свете протолитической теории и теории электролитической диссоциации, а также солей в свете теории электролитической диссоциации.

Отдельная глава посвящена окислительно-восстановительным процессам, в том числе методам составления уравнений и электролизу, которые важны для успешной сдачи итогового экзамена. Большое внимание в этой главе уделено и химическим источникам тока, без которых сложно представить современное общество.

Химия неметаллов и металлов, важнейших представителей этих классов веществ и их соединений изучается в системе (состав ↔ строение ↔ свойства ↔ применение ↔ получение ↔ нахождение в природе) и рассматривется в единой связи органической и неорганической химии. Таким образом реализуется главная идея курса — единство живого и неживого материального мира, описываемого общими законами химии.

Раскрыть роль химической науки, как производительной силы современного общества позволяет глава завершающая курс 11 класса «Химия и общество».

## Органическая химия. 10 класс ТЕМА 1. НАЧАЛЬНЫЕ ПОНЯТИЯ ОРГАНИЧЕСКОЙ ХИМИИ (13 ч).

**Предмет органической химии. Органические вещества.** Что изучает органическая химия. Краткий очерк развития органической химии. Сравнение неорганических и органических веществ. Способность атомов углерода соединяться в различные цепи. Углеводороды и их производные. Понятие о заместителе. **Теория строения органических соединений А. М. Бутлерова.** Понятие валентности. Работы Ф. А. Кекуле. Роль А. М. Бутлерова в создании теории строения органических соединений. Её основные положения.

Причины многообразия органических соединений: образование одинарных, двойных и тройных связей между атомами углерода. Изомерия. Эмпирическая, молекулярная и структурная формулы органических соединений.

**Концепция гибридизации атомных орбиталей**. Строение атома углерода: *s*- и *p*-орбитали, типы их гибридизации. Образование ковалентных связей. Электронная и электроннографическая формулы атома углерода.

**Классификация органических соединений.** Классификация по элементному составу: углеводороды, галоген-, азот- и кислородсодержащие органические соединения.

Классификация по строению углеродного скелета: ациклические и циклические (карбоциклические и гетероциклические) органические вещества.

Классификация углеводородов: предельные (алканы и циклоалканы), непредельные (алкены, алкины, алкадиены), арены.

Классификация органических соединений по наличию функциональных групп (гидроксильная, карбонильная, карбоксильная, нитрогруппа, аминогруппа). Спирты. Альдегиды. Кетоны. Карбоновые кислоты. Нитросоединения. Амины.

**Принципы номенклатуры органических соединений.** Понятие о химической номенклатуре. Номенклатура тривиальная (историческая) и рациональная.

Международная номенклатура органических соединений — IUPAC. Принципы составления названия органического соединения по номенклатуре IUPAC.

**Классификация реакций в органической химии**. Понятие о субстрате и реагенте. Классификация реакций по структурным изменениям вещества: присоединения (в том числе полимеризации, отщепления (элеменирования), замещения и изомеризации.

Понятие о гомо- и гетеролитическом разрывах ковалентной связи, электрофилах и нуклеофилах.

Классификация реакций по типу реакционных частиц: радикальные, электрофильные и нуклеофильные.

Классификация реакций по изменению степеней окисления: окисления и восстановления.

Классификация реакций по частным признакам: галогенирование и дегалогенирование, гидрирование и дегидрирование, гидратации и дегидратации, гидрогалогенирование и дегидрогалогенирование.

Демонстрации. Коллекция органических веществ, материалов и изделий из них. Шаростержневые и объёмные модели (модели Стюарта—Бриглеба) этанола и диэтилового эфира, бутана и изобутана, метана, этилена и ацетилена. Взаимодействие натрия с этанолом; отсутствие взаимодействия с диэтиловым эфиром. Модель отталкивания гибридных орбиталей (демонстрация с помощью воздушных шаров). Демонстрационная таблица «Различные гибридные состояния атома углерода». Образцы органических соединений различных классов. Модели органических соединений с различными функциональными группами. Горение метана или пропан-бутановой смеси из газовой зажигалки. Взрыв смеси метана с хлором. Обесцвечивание бромной воды этиленом. Деполимеризация полиэтилена. Получение этилена дегидратацией этанола.

**Лабораторный опыт.** Изготовление моделей молекул — представителей различных классов органических соединений.

Практическая работа 1. Качественный анализ органических соединений.

## ТЕМА 2. ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ (5 ч.)

**Алканы.** Электронное и пространственное строение молекулы метана. Гомологический ряд алканов и их изомерия. Пространственное строение молекул алканов (в том числе и конформеры). Номенклатура алканов.

Промышленные способы получения алканов: крекинг нефтепродуктов, реакция алкилирования, получение синтетического бензина, нагревание углерода в атмосфере водорода. Лабораторные способы получения алканов: реакция Вюрца, пиролиз солей карбоновых кислот со щелочами, гидролиз карбида алюминия.

Физические свойства алканов. Взаимное влияние атомов в органических молекулах. Положительны и отрицательный индуктивные эффекты. Прогноз реакционной способности алканов. Механизм реакций радикального замещения. Реакции радикального замещения: галогенирование и нитрование. Реакции дегидрирования. Реакции окисления. Другие реакции с разрушением углеродной цепи. Применение алканов на основе свойств.

**Циклоалканы.** Гомологический ряд и строение циклоакланов. Их номенклатура и изомерия. Понятие о пространственной изомерии. Конформеры циклогексана.

Способы получения циклоалканов: ректификация нефти, каталитическое дегидрирование аренов, внутримолерулярная реакция Вюрца.

Физические и химические свойства циклоаканов (реакции присоединения и замещения). Применение циклоаканов.

**Демонстрации.** Шаростержневые модели молекул алканов для иллюстрации свободного вращения вокруг связи С—С, а также заслонённой и заторможенной конформаций этана. Получение метана из ацетата натрия и гидроксида натрия. Горение метана, пропан-бутановой смеси, парафина в условиях избытка и недостатка кислорода. Взрыв смеси метана с воздухом. Отношение метана, пропан-бутановой смеси, бензина к бромной воде и раствору КМnO<sub>4</sub>.

**Лабораторные опыты.** Изготовление парафинированной бумаги, испытание её свойств (отношение к воде и жиру). Обнаружение воды, сажи, углекислого газа в продуктах горения свечи.

## ТЕМА 3. НЕПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ (13 ч.)

**Алкены.** Электронное и пространственное строение молекулы этилена. Гомологический ряд и изомерия алкенов (углеродного скелета, геометрическая или *цис-транс*-изомерия, положения двойной связи, межклассовая). Номенклатура алкенов.

Промышленные способы получения алкенов: крекинг алканов, входящих в состав нефти и попутного нефтяного газа, дегидрирование предельных углеводородов.

Лабораторные способы получения алкенов: реакции элиминирования (дегалогенирование), дегидратация спиртов и дегалогенирование дигалогеналканов, а также дегидрогалогенирование галогенопроизводных предельных углеводородов. Правило Зайцева.

Физические свойства алкенов.

Взаимное влияние атомов в органических молекулах. Мезомерный эффект.

Прогноз реакционной способности алкенов. Механизм реакций электрофильного присоединения.

Реакции присоединения алкенов: галогенирование, гидрирование, гидрогалогенирование, гидратация, полимеризация. Правило Марковникова. Реакции окисления алкенов КМпО<sub>4</sub> (реакция Вагнера) в водной и сернокислой среде. Применение алкенов на основе свойств.

Высокомолекулярные соединения. Строение полимеров: мономер, полимер, элементарное

звено, степень полимеризации.

Линейные, разветвлённые и сетчатые (сшитые) полимеры. Стереорегулярные и нестереорегулярные полимеры.

Отношение полимеров к нагреванию: термопластичные и термореактивные полимеры.

Полимеры на основе этиленовых углеводородов и их производных: полиэтилен, полипропилен, политетрафторэтилен и поливинилхлорид.

**Алкадиены.** Классификация диеновых углеводородов: изолированные, кумулированные и сопряжённые.

Номенклатура и изомерия диеновых углеводородов (межклассовая, углеродного скелета, взаимного положения кратных связей, геометрическая).

Строение сопряжённых алкадиенов.

Способы получения алкадиенов: дегидрирование алканов, реакция Лебедева, дегидрогалогенирование дигалогеналканов.

Физические свойства диеновых углеводородов. Химические свойства диеновых углеводородов: реакции присоединения, окисления и полимеризации — и особенности их протекания. Нахождение в природе и применение алкадиенов. Терпены.

Эластомеры. Натуральный каучук, как продукт полимеризации изопрена. Синтетические каучуки: бутадиеновый каучук (СБК), дивиниловый, изопреновый, хлоропреновый, бутадиенстирольный. Вулканизация каучуков: резины и эбонит.

Алкины. Электронное и пространственное строение молекулы ацетилена.

Гомологический ряд и изомерия алкинов (углеродного скелета, положения тройной связи, межклассовая). Номенклатура алкинов.

Способы получения алкинов: пиролиз метана (в том числе и окислительный пиролиз природного газа), карбидный метод, дегидрогалогенирование дигалогеналканов, взаимодействие солей ацетиленовых углеводородов (ацетиленидов) с галогеналканами.

Физические свойства ацетиленовых углеводородов. Химические свойства. Реакции присоединения (гидрирование, галогенирование, гидрогалогенирование, гидратация, тримеризация ацетилена). Реакция Кучерова и правило Эльтекова. Кислотные свойства алкинов. Ацетилениды. Окисление алкинов: раствором КМпО<sub>4</sub> и горение.

Области применения ацетилена на основе его свойств. Применение гомологов ацетилена. Полимеры на основе ацетилена. Винилацетилен.

Демонстрации. Объёмные модели цис-, транс-изомеров алкенов. Получение этилена из этанола и доказательство его непредельного строения (реакции с бромной водой и раствором КМпО<sub>4</sub>). Обесцвечивание этиленом бромной воды и раствора перманганата калия. Горение этилена. Взаимодействие алканов и алкенов с концентрированной серной кислотой. Модели молекул алкадиенов с изолированными, кумулированными и сопряжёнными двойными связями. Коагуляция млечного сока каучуконосов (молочая, одуванчика или фикуса). Деполимеризация каучука и доказательство наличия двойных связей в молекулах мономеров (реакции с бромной водой и раствором КМnO<sub>4</sub>). Ознакомление с коллекцией «Каучуки и Получение ацетилена ИЗ карбида кальция. Объёмные Взаимодействие ацетилена с бромной водой. Взаимодействие ацетилена с раствором КМпО<sub>4</sub>. Горение ацетилена.

**Лабораторные опыты.** Ознакомление с коллекцией полимерных образцов пластмасс и волокон.

Практическая работа 2. Получение метана и этилена и исследование их свойств.

## ТЕМА 4. АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ (7 ч.)

**Арены.** Первые сведения об ароматических соединениях. Строение молекулы бензола: единая  $\pi$ -электронная система, или ароматический секстет.

Гомологический ряд. Изомерия взаимного расположения заместителей в бензольном кольце. Номенклатура аренов. Ксилолы.

Промышленные способы получения бензола и его гомологов: ароматизация алканов и циклоалканов, тримеризация ацетилена (реакция Зелинского).

Лабораторные способы получения аренов: алкилирование бензола, пиролиз солей ароматических кислот.

Физические свойства аренов. Прогноз реакционной способности аренов. Реакции электрофильного замещения и их механизм: галогенирование, алкилирование (реакция Фриделя—Крафтса), нитрование, сульфирование.

Реакции присоединения: гидрирование, радикальное галогенирование. Реакции окисления.

Толуол, как гомолог бензола. Особенности химических свойств алкилбензолов. Ориентанты первого и второго рода. Взаимное влияние атомов в молекулах алкилбензолов на примере реакции замещения. Реакции окисления. Применение аренов на основе их свойств.

Демонстрации. Шаростержневые и объёмные модели бензола и его гомологов. Растворение в бензоле различных органических и неорганических веществ (например, серы, иода). Ознакомление с физическими свойствами бензола (растворимость в воде, плотность, температура плавления — выдерживание запаянной ампулы с бензолом в бане со льдом). Горение бензола на стеклянной палочке. Отношение бензола к бромной воде и раствору КМпО<sub>4</sub>. Нитрование бензола. Отношение толуола к воде. Растворение в толуоле различных органических и неорганических веществ (например, серы, иода). Обесцвечивание толуолом раствора КМпО<sub>4</sub> и бромной воды.

## ТЕМА 5. ПРИРОДНЫЕ ИСТОЧНИКИ УГЛЕВОДОРОДОВ (5 ч.)

**Природный газ и попутный нефтяной газ.** Природный газ и его состав. Промышленное использование и переработка природного газа.

Попутные нефтяные газы и их переработка. Фракции попутного нефтяного газа: газовый бензин, пропан-бутановая смесь и сухой газ.

Нефть. Нефть, как природный источник углеводородов, её состав и физические свойства.

Углеводороды как предмет международного сотрудничества и важнейшая отрасль экономики России.

Промышленная переработка нефти. Ректификация (фракционная перегонка). Фракции нефти: бензиновая, лигроиновая, керосиновая, газойль, мазут. Соляровые масла. Вазелин. Парафин. Гудрон. Крекинг нефтепродуктов: термический, каталитический, гидрокрекинг. Риформинг. Циклизация. Ароматизация. Детонационная стойкость бензина. Октановое число.

**Каменный уголь. Промышленная переработка каменного угля.** Нахождение в природе и состав углей: каменный уголь, антрацит, бурый уголь.

Коксование и его продукты: кокс, каменноугольная смола, надсмольная вода, коксовый газ. Газификация угля. Водяной газ. Каталитическое гидрирование угля.

## ТЕМА 6. ГИДРОКСИЛСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ ВЕЩЕСТВА (11 ч.)

Спирты. Понятие о спиртах, история их изучения. Функциональная гидроксильная группа.

Классификация спиртов: по типу углеводородного радикала (предельные, непредельные, ароматические), по числу гидроксильных групп в молекуле (одно- и многоатомные), по типу

углеродного атома, связанного с гидроксильной группой (первичные, вторичные, третичные).

Электронное и пространственное строение молекул спиртов. Гомологический ряд предельных одноатомных спиртов. Изомерия (положения функциональной группы, углеродного скелета, межклассовая) и номенклатура алканолов.

Общие способы получения алканолов: гидратация алкенов, гидролиз галогеналканов, восстановление карбонильных соединений. Способы получения некоторых алканолов: метилового спирта — реакцией щелочного гидролиза хлорметана и из синтез-газа; этилового спирта — спиртовым брожением глюкозы и гидратацией этилена; пропанола-1— восстановлением пропионового альдегида; пропанола-2 — гидрированием ацетона и гидратацией пропилена.

Физические свойства спиртов. Водородная связь. Прогноз реакционной способности предельных одноатомных спиртов и его подтверждение при рассмотрении химических свойств спиртов: кислотные свойства, реакции нуклеофильного замещения с галогеноводородами, межмолекулярная и внутримолекулярная дегидратация (получение простых эфиров и алкенов), реакции дегидрирования, окисления и этерификации.

Низшие и высшие (жирные) спирты. Синтетические моющие средства (СМС). Области применения метанола на основе его свойств. Токсичность метанола. Области применения этилового спирта на основе его свойств. Алкоголизм как социальное явление и его профилактика.

**Многоатомные спирты.** Атомность спиртов. Гликоли и глицерины. Изомерия, номенклатура и получение многоатомных спиртов. Особенности химических свойств многоатомных спиртов. Качественная реакция на многоатомные спирты.

Этиленгликоль и глицерин, как представители многоатомных спиртов. Их применение.

**Фенолы.** Состав и строение молекулы фенола. Атомность фенолов. Гомологический ряд, изомерия и номенклатура фенолов.

Способы получения фенола: из каменноугольной смолы, кумольный способ, из галогенаренов и методом щелочного плава.

Физические свойства фенолов. Химические свойства фенола: кислотные свойства, окисление, реакции электрофильного замещения (галогенирование, нитрование), поликонденсация.

Качественные реакции на фенол: с бромной водой и раствором хлорида железа(III). Применение фенолов.

Демонстрации. Шаростержневые модели молекул одноатомных и многоатомных спиртов. Физические свойства этанола, пропанола-1, бутанола-1. Взаимодействие натрия со спиртом. Взаимодействие спирта с раствором дихромата калия в серной кислоте. Получение сложного эфира. Получение этилена из этанола. Сравнение реакций горения этилового и пропилового спиртов. Обнаружение этилового спирта в различных продуктах с помощью иодоформной пробы. Взаимодействие глицерина со свежеосажденным Cu(OH)2. Распознавание водных растворов глицерина и этанола. Отношение этиленгликоля и глицерина к воде и органическим растворителям. Растворимость фенола в воде при обычной и повышенной температурах. Вытеснение фенола из фенолята натрия угольной кислотой. Качественные реакции на фенол: обесцвечивание бромной воды и с раствором FeCl<sub>3</sub>. Обесцвечивание фенола раствором KMnO<sub>4</sub>.

## ТЕМА 7. АЛЬДЕГИДЫ И КЕТОНЫ (7 ч.)

Практическая работа № 3. Исследование свойств спиртов.

**Альдегиды.** Альдегиды как карбонильные органические соединения. Состав их молекул и электронное строение. Гомологический ряд, изомерия и номенклатура альдегидов.

Способы получения: окисление соответствующих спиртов, окисление углеводородов (Вакерпроцесс), гидратация алкинов, пиролиз карбоновых кислот или их солей, щелочной гидролиз лигалогеналканов.

Физические свойства альдегидов. Прогноз реакционной способности альдегидов. Химические свойства: реакции присоединения (циановодорода, гидросульфита натрия, реактива Гриньяра, гидрирование), реакции окисления (серебряного зеркала и комплексами меди(II)), реакции конденсации (альдольная и кротоновая, с азотистыми основаниями и поликонденсации), реакции замещения по  $\square$ -углеродному атому.

**Кетоны.** Кетоны как карбонильные соединения. Особенности состава и электронного строения их молекул.

Гомологический ряд, изомерия и номенклатура кетонов. Способы получения кетонов.

Физические свойства кетонов. Прогноз реакционной способности кетонов.

Химические свойства: реакции присоединения (циановодорода, гидросульфита натрия, реактива Гриньяра, гидрирование), реакции окисления, реакции замещения по α-углеродному атому.

**Демонстрации.** Шаростержневые и Стюарта—Бриглеба модели альдегидов. Окисление бензальдегида кислородом воздуха. Получение фенолформальдегидного полимера.

**Лабораторные опыты.** Получение уксусного альдегида окислением этанола. Ознакомление с физическими свойствами альдегидов (ацетальдегида и водного раствора формальдегида). Реакция «серебряного зеркала». Реакция с гидроксидом меди(II) при нагревании. Отношение ацетона к воде. Ацетон как органический растворитель.

Практическая работа 4. Исследование свойств альдегидов и кетонов.

## ТЕМА 8. КАРБОНОВЫЕ КИСЛОТЫ И ИХ ПРОИЗВОДНЫЕ (13 ч.)

**Карбоновые кислоты.** Понятие о карбоновых кислотах. Классификация карбоновых кислот: по природе углеводородного радикала, по числу карбоксильных групп. Электронное и пространственное строение карбоксильной группы. Карбоновые кислоты в природе.

Гомологический ряд предельных одноосновных карбоновых кислот. Изомерия и номенклатура. Получение карбоновых кислот окислением алканов, алкенов, первичных спиртов и альдегидов, а также гидролизом (тригалогеналканов, нитрилов).

Получение муравьиной кислоты взаимодействием гидроксида натрия с оксидом углерода (II), уксусной — карбонилированием метилового спирта и брожением этанола, пропионовой — карбонилированием этилена.

Физические свойства карбоновых кислот, обусловленные молярными массами и водородными связями. Прогноз химических свойств карбоновых кислот. Общие свойства кислот. Реакции по углеводородному радикалу. Образование функциональных производных. Реакция этерификации. Образование галогенангидридов, ангидридов, амидов, нитрилов.

Муравьиная и уксусная кислоты, как представители предельных одноосновных карбоновых кислоты. Пальмитиновая и стеариновая кислоты, как представители высших предельных одноосновных карбоновых кислот. Акриловая и метакриловая кислоты, как представители непредельных одноосновных карбоновых кислот. Олеиновая, линолевая и линоленовая, как представители высших непредельных одноосновных карбоновых кислот. Бензойная и салициловая, как представители ароматических карбоновых кислот. Двухосновные карбоновые кислоты на примере щавелевой. Применение и значение карбоновых кислот.

Соли карбоновых кислот. Мыла. Получение солей карбоновых кислот на основе общих свойств кислот: взаимодействием с активными металлами, основными оксидами, основаниями

или солями. Получение солей карбоновых кислот щелочным гидролизом сложных эфиров. Химические свойства солей карбоновых кислот: гидролиз по катиону, реакции ионного обмена, пиролиз, электролиз водных растворов. Мыла. Жёсткость воды и способы её устранения. Применение солей карбоновых кислот.

Сложные эфиры. Строение молекул, номенклатура и изомерия сложных эфиров. Их физические свойства. Способы получения сложных эфиров: реакция этерификации, взаимодействие спиртов с ангидридами или галогенангидридами кислот реакцией поликонденсации на примере получения полиэтилентерефталата. Химические свойства сложных эфиров: гидролиз и горение. Применение сложных эфиров.

**Воски и жиры.** Воски, их строение, свойства и классификация: растительные и животные. Биологическая роль. Жиры, их строение и свойства: омыление, гидрирование растительных жиров. Биологическая роль жиров. Замена жиров в технике непищевым сырьём.

Демонстрации. Шаростержневые и Стюарта—Бриглеба модели альдегидов.

Окисление бензальдегида кислородом воздуха. Получение фенолформальдегидного полимера. Шаростержневые модели молекул карбоновых кислот. Таблица «Классификация карбоновых Физические кислот». свойства этанола, пропанола-1, бутанола-1. Получение уксуноизоамилового эфира. Коллекция органических кислот. Отношение предельных и непредельных кислот к бромной воде и раствору перманганата калия. Получение мыла из жира. Сравнение моющих свойств хозяйственного мыла и СМС в жёсткой воде. Коллекция сложных эфиров. Шаростержневые модели молекул сложных эфиров и изомерных им карбоновых Получение онткисп пахнущего сложного эфира. Отношение подсолнечного, машинного масел и маргарина к водным растворам брома и КМпО4.

**Лабораторные опыты.** Ознакомление с физическими свойствами некоторых предельных одноосновных кислот: муравьиной, уксусной, масляной. Отношение различных кислот к воде. Взаимодействие раствора уксусной кислоты: с металлом (Mg или Zn); оксидом металла (CuO); гидроксидом металла (Cu(OH)<sub>2</sub> или Fe(OH)<sub>3</sub>), солью, (Na<sub>2</sub>CO<sub>3</sub> и раствором мыла). Ознакомление с образцами сложных эфиров. Отношение сложных эфиров к воде и органическим веществам (красителям). Выведение жирного пятна с помощью сложного эфира. Растворимость жиров в воде и органических растворителях.

Практическая работа 5. Исследование свойств карбоновых кислот и их производных.

## ТЕМА 9. УГЛЕВОДЫ (10 ч.)

**Углеводы.** Состав молекул углеводов и их строение. Классификация углеводов: моно- ди-, олиго- и полисахариды; кетозы и альдозы; тетрозы, пентозы, гексозы. Восстанавливающие и невосстанавливающие углеводы. Биологическая роль углеводов и значение в жизни человека.

**Моносахариды.** Строение молекулы и физические свойства глюкозы. Циклические формы глюкозы и их отражение с помощью формул Хеуорса. Гликозидный гидроксил.  $\alpha$ -D-глюкоза и  $\beta$ -D-глюкоза. Таутомерия как результат равновесия в растворе глюкозы.

Получение глюкозы. Фотосинтез. Химические свойства: реакции по альдегидной и по гидроксильным группам. Спиртовое, молочнокислое и маслянокислое брожения глюкозы.

Фруктоза как изомер глюкозы. Структура и физические и химические свойства.

**Дисахариды.** Строение молекул дисахаридов. Сахароза. Нахождение в природе. Производство сахарозы из сахарной свёклы. Химические свойства сахарозы. Лактоза и мальтоза как изомеры сахарозы. Их свойства и значение.

**Полисахариды.** Строение молекул полисахаридов. Крахмал. Состав и строение его молекул. Амилоза и амилопектин. Химические свойства: гидролиз и качественная реакция. Нахождение

в природе, получение крахмала и его применение. Биологическая роль крахмала.

Строение молекул целлюлозы. Свойства целлюлозы: образование сложных эфиров и продуктов алкилирования. Нитраты и ацетаты целлюлозы — основа получения взрывчатых веществ и искусственных волокон. Нахождение в природе и её биологическая роль. Применение пеллюлозы

**Демонстрации.** Образцы углеводов и изделий из них. Получение сахарата кальция и выделение сахарозы из раствора сахарата кальция. Реакция «серебряного зеркала» для глюкозы. Реакции с фуксинсернистой кислотой.

Отношение растворов сахарозы и мальтозы к гидроксиду меди(II). Ознакомление с физическими свойствами крахмала. Получение крахмального клейстера. Ознакомление с физическими свойствами целлюлозы. Получение нитратов целлюлозы.

**Лабораторные опыты.** Ознакомление с физическими свойствами глюкозы. Взаимодействие глюкозы с гидроксидом меди(II) при комнатной температуре и при нагревании. Кислотный гидролиз сахарозы. Качественная реакция на крахмал. Ознакомление с коллекцией волокон.

Практическая работа 6. Исследование свойств углеводов.

## ТЕМА 10. АЗОТСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ (14 ч.)

**Амины.** Понятие об аминах. Классификация аминов: по числу углеводородных радикалов (первичные, вторичные, третичные) и по их природе (алифатические, ароматические и жирноароматические).

Электронное и пространственное строение молекул аминов. Гомологический ряд, изомерия и номенклатура предельных алифатических аминов. Гомологический ряд, изомерия и номенклатура ароматических аминов.

Способы получения алифатических аминов: взаимодействием аммиака со спиртами, взаимодействием галогеналканов с аммиаком, взаимодействием солей алкиламмония со шёлочами

Способы получения ароматических аминов: восстановлением ароматических нитросоединений (реакция Зинина), взаимодействием ароматических аминов с галеналканами.

Прогноз реакционной способности аминов на основе их электронного строения. Химические свойства аминов, как органических оснований. Реакции электрофильного замещения ароматических аминов, Реакции окисления, алкилирования. Образование амидов. Взаимодействие аминов с азотистой кислотой. Применение аминов на основе свойств.

Аминокислоты. Понятие об аминокислотах. Строение молекул и номенклатура аминокислот.

Способы получения аминокислот: гидролиз белков, синтез на основе галогенопроизводных карбоновых кислот, циангидринный синтез, биотехнологический способ.

Физические свойства аминокислот. Аминокислоты как амфотерные органические соединения: взаимодействие с кислотами и щелочами, образование биполярного иона. Реакции этерификации и конденсации.

Пептидная связь и полипептиды. Качественные реакции на аминокислоты: нинигидриновая и ксантопротеинования. Применение аминокислот и биологическая роль пептидов.

**Белки.** Структуры молекул белков: первичная, вторичная, третичная, четвертичная. Синтез белков. Свойства белков: денатурация, гидролиз, качественные реакции. Биологические функции белков.

**Нуклеиновые кислоты.** Понятие об азотистых основаниях. Нуклеиновые кислоты: РНК и ДНК. Нуклеотиды и их состав. Сравнение ДНК и РНК и их роль в передачи наследственных признаков организмов и биосинтезе белка.

**Демонстрации.** Физические свойства анилина. Отношение бензола и анилина к бромной воде. Коллекция анилиновых красителей. Горение метиламина. Взаимодействие метиламина и анилина с водой и кислотами. Окрашивание тканей анилиновыми красителями. Гидролиз белков с помощью пепсина. Обнаружение функциональных групп в молекулах аминокислот (на примере глицина). Обнаружение аминокислот с помощью нингидрина. Растворение и осаждение белков. Денатурация белков. Качественные реакции на белки. Модели ДНК и различных видов РНК.

**Лабораторные опыты.** Изготовление шаростержневых моделей молекул изомерных аминов. Изготовление моделей простейших пептидов. Растворение белков в воде и их коагуляция. Обнаружение белка в курином яйце и молоке.

Практическая работа 7. Амины. Аминокислоты. Белки.

Практическая работа 8. Идентификация органических соединений.

#### Обшая химия. 11 класс

# ТЕМА 1. СТРОЕНИЕ АТОМА. ПЕРИОДИЧЕСКИЙ ЗАКОН И ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА. (10 ч).

**Строение атома.** Сложное строение атома. Доказательства этого: катодные и рентгеновские лучи, фотоэффект, радиоактивность. Открытие элементарных частиц: электрона и нуклонов (протонов и нейтронов). Модели Томсона, Резерфорда, Бора. Постулаты Бора. Строение атома в свете квантово-механических представлений.

Нуклоны (протоны и нейтроны), нуклиды. Понятие об изобарах и изотопах. Ядерные реакции и их уравнения.

Корпускулярно-волновой дуализм электрона. Понятие электронной орбитали и электронного облака. s-, p-, d- и f-орбитали. Квантовые числа. Строение электронной оболочки атома.

Порядок заполнения электронами атомных орбиталей в соответствии с принципом минимума энергии, запретом Паули, правилом Хунда, правилом Клечковского. Электронные формулы атомов и ионов.

**Периодический закон Д. И. Менделеева.** Предпосылки открытия: работы предшественников, решения международного съезда химиков в г. Карлсруэ, личностные качества Д. И. Менделеева.

Открытие периодического закона. Менделеевская формулировка периодического закона. Взаимосвязь периодического закона и теории строения атома. Современная формулировка периодического закона.

Взаимосвязь периодического закона и периодической системы. Периодическая система и строение атома. Физический смысл символики периодической системы.

Изменение свойств элементов в периодах и группах, как функция строения их атомов. Понятие об энергии ионизации и сродства к электрону.

Периодичность их изменения металлических и неметаллических свойств элементов в группах и периодах, как функция строения электронных оболочек атомов.

Значение периодического закона и периодической системы.

**Демонстрации.** Фотоэффект. Катодные лучи (электронно-лучевые трубки). Портреты Томсона, Резерфорда, Бора. Портреты Иваненко и Гапона; Берцелиуса, Деберейнера, Ньюлендса, Менделеева. Модели орбиталей различной формы. Спектры поглощения и испускания соединений химических элементов (с помощью спектроскопа). Различные варианты таблиц

периодической системы химических элементов Д. И. Менделеева. Образцы простых веществ, оксидов и гидроксидов элементов третьего периода и демонстрация их свойств.

## ТЕМА 2. ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ ВЕЩЕСТВА (10 ч)

**Химическая связь.** Понятие о химической связи. Основные характеристики химической связи: энергия, длина, дипольный момент.

Ионная химическая связь и ионные кристаллические решётки. Зависимость физических свойств веществ от типа кристаллической решетки.

Возбуждённое состояние атома. Понятие о ковалентной связи. Обменный механизм образования ковалентной связи. Электроотрицательность. Направленность ковалентной связи, её кратность.  $\sigma$ - и  $\pi$ - связи. Донорно-акцепторный механизм образования ковалентной связи. Типы кристаллических решёток с ковалентной связью: атомная и молекулярная.

Зависимость физических свойств веществ от типа кристаллической решетки.

Природа химической связи в металлах и сплавах. Общие физические свойства металлов: тепло-и электропроводность, пластичность, металлический блеск, магнитные свойства.

Металлическая кристаллическая решётка и её особенности, как функция металлической связи.

**Комплексные соединения.** Комплексообразование и комплексные соединения. Строение комплексных соединений: комплексообразователь и координационное число, лиганды, внутренняя и внешняя сферы.

Классификация комплексов: хелаты, катионные, анионные и нейтральные, аквакомплексы, аммиакаты, карбонилы металлов. Номенклатура комплексных соединений и их свойства. Диссоциация комплексных соединений. Значение комплексных соединений и их роль в природе.

**Агрегатные состояния веществ и фазовые переходы.** Газы и газовые законы (Бойля-Мариотта, Шарля, Гей-Люссака). Уравнение Мендлеева-Клапейрона для идеального газа. Жидкости. Текучесть, испарение, кристаллизация.

Твёрдые вещества. Плавление. Фазовые переходы. Сублимация и десублимация. Жидкие кристаллы. Плазма

**Межмолекулярные взаимодействия.** Водородная связь и её разновидности: межмолекулярная и внутримолекулярная. Физические свойства веществ с водородной связью. Её биологическая роль в организации структур белков и нуклеиновых кислот. Вандерваальсово взаимодействие и его типы: ориентационное, индукционное и дисперсионное.

Демонстрации. Коллекция кристаллических веществ ионного строения, аморфных веществ и изделий из них. Модели кристаллических решёток с ионной связью. Модели молекул различной архитектуры. Модели кристаллических веществ атомной и молекулярной структуры. Коллекция веществ атомного и молекулярного строения и изделий из них. Портрет Вернера. Получение комплексных органических и неорганических соединений. Демонстрация сухих кристаллогидратов. Модели кристаллических решёток металлов. Вода в различных агрегатных состояниях и её фазовые переходы. Возгонка иода или бензойной кислоты. Диаграмма «Фазовые переходы веществ». Модели молекул ДНК и белка.

**Лабораторные опыты.** Взаимодействие многоатомных спиртов и глюкозы с фелинговой жидкостью. Качественные реакции на ионы  $Fe^{2+}$  и  $Fe^{3+}$ .

**Практическая работа 1.** Получение комплексных органических и неорганических соединений и исследование их свойств.

#### ТЕМА 3. ДИСПЕРСНЫЕ СИСТЕМЫ И РАСТВОРЫ (9 ч)

**Дисперсные системы.** Химические вещества и смеси. Химическая система. Гомогенные и гетерогенные смеси. Дисперсная система: дисперсионная среда и дисперсная фаза. Классификация дисперсных систем.

Аэрозоли. Пропелленты. Эмульсии и эмульгаторы. Суспензии. Седиментация.

Коллоидные растворы. Эффект Тиндаля. Получение коллоидных растворов дисперсионным, конденсационным и химическим способами. Золи и коагуляция. Гели и синерезис. Значение коллоидных систем.

**Растворы.** Растворы как гомогенные системы и их типы: молекулярные, молекулярно-ионные, ионные. Способы выражения концентрации растворов: объёмная, массовая и мольная доли растворённого вещества. Молярная концентрация растворов.

**Демонстрации.** Образцы дисперсных систем и их характерные признаки. Образцы (коллекции) бытовых и промышленных аэрозолей, эмульсий и суспензий. Прохождение луча света через коллоидные и истинные растворы (эффект Тиндаля). Зависимость растворимости в воде твёрдых, жидких и газообразных веществ от температуры. Получение пересыщенного раствора тиосульфата натрия и его мгновенная кристаллизация.

**Лабораторные опыты.** Знакомство с коллекциями пищевых, медицинских и биологических гелей и золей. Получение коллоидного раствора хлорида железа(III).

**Практическая работа 2.** Растворимость веществ в воде и факторы её зависимости от различных факторов.

**Практическая работа 3.** Очистка воды фильтрованием, дистилляцией и перекристаллизацией. **Практическая работа 4.** Приготовление растворов различной концентрации.

Практическая работа 5. Определение концентрации кислоты титрованием.

## ТЕМА 4. ЗАКОНОМЕРНОСТИ ПРОТЕКАНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ И ФИЗИКО-ХИМИЧЕСКИХ ПРОЦЕСОВ (9 ч)

**Основы химической термодинамики.** Химическая термодинамика. Термодинамическая система. Открытая, закрытая, изолированная системы. Внутренняя энергия системы. Энтальпия, или теплосодержание системы. Первое начало термодинамики. Изохорный и изобарный процессы. Термохимическое уравнение.

Энтальпия. Стандартная энтальпия. Расчёт энтальпии реакции. Закон Гесса и следствия из него. Энтропия. Второе и третье начала термодинамики. Свободная энергия Гиббса.

**Скорость химических реакций**. Понятие о скорости реакции. Энергия активации и активированный комплекс. Закон действующих масс. Кинетическое уравнение и константа скорости химической реакции. Порядок реакции.

Факторы, влияющие на скорость гомогенной реакции: природа и концентрация реагирующих веществ, температура. Температурный коэффициент. Уравнение С. Аррениуса.

Факторы, влияющие на скорость гетерогенной реакции: концентрация реагирующих веществ и площадь их соприкосновения

Основные понятия каталитической химии: катализаторы и катализ, гомогенный и гетерогенный катализ, промоторы, каталитические яды и ингибиторы. Механизм действия катализаторов.

Основные типы катализа: кислотно-основной, окислительно-восстановительный, металлокомплексный и катализ металлами, ферментативный. Ферменты, как биологические катализаторы белковой природы.

**Химическое равновесие.** Понятие об обратимых химических процессах. Химическое равновесие и константа равновесия. Смещение химического равновесия изменением концентрации веществ, изменением давления и температуры.

**Демонстрации.** Экзотермические процессы на примере растворения серной кислоты в воде. Эндотермические процессы на примере растворения солей аммония. Изучение зависимости скорости химической реакции от концентрации веществ, температуры (взаимодействие тиосульфата натрия с серной кислотой), поверхности соприкосновения веществ (взаимодействие соляной кислоты с гранулами и порошками алюминия или цинка). Проведение каталитических реакций разложения пероксида водорода, горения сахара, взаимодействия иода и алюминия. Коррозия железа в водной среде с уротропином и без него. Наблюдение смещения химического равновесия в системах:  $2NO_2 \leftrightarrow N_2O_4$ ,  $FeCl_3 + KSCN \leftrightarrow Fe(SCN)_3 + 3KCl$ .

Лабораторный опыт. Знакомство с коллекцией СМС, содержащих энзимы.

**Практическая работа 6.** Изучение влияния различных факторов на скорость химической реакции.

# **ТЕМА 5. ХИМИЧЕСКИЕ РЕАКЦИИ В ВОДНЫХ РАСТВОРАХ (12 ч)**

Свойства растворов электролитов. Вода — слабый электролит. Катион гидроксония. Ионное произведение воды. Нейтральная, кислотная и щелочная среды. Понятие рН. Водородный показатель. Индикаторы. Роль рН среды в природе и жизни человека. Ионные реакции и условия их протекания.

Ранние представления о кислотах и основаниях. Кислоты и основания с позиции теории электролитической диссоциации. Теория кислот и оснований Бренстеда—Лоури. Сопряжённые кислоты и основания. Амфолиты.

Классификация кислот и способы их получения. Общие химические свойства органических и неорганических кислот: реакции с металлами, с оксидами и гидроксидами металлов, с солями, со спиртами. Окислительные свойства концентрированной серной и азотной кислот.

Классификация оснований и способы их получения. Общие химические свойства щелочей: реакции с кислотами, кислотными и амотерными оксидами, солями, некоторыми металлами и неметаллами, с органическими веществами (галоидопроизводными углеводородов, фенолом, жирами). Химические свойства нерастворимых оснований: реакции с кислотами, реакции разложения и комплексообразования. Химические свойства бескислородных оснований (аммиака и аминов): взаимодействие с водой и кислотами.

Классификация солей органический и неорганических кислот. Основные способы получения солей. Химические свойства солей: разложение при нагревании, взаимодействие с кислотами и щелочами, другими солями. Жёсткость воды и способы её устранения.

**Гидролиз.** Понятие гидролиза. Гидролиз солей и его классификация: обратимый и необратимый, по аниону и по катиону, ступенчатый. Усиление и подавление обратимого гидролиза. Необратимый гидролиз бинарных соединений.

**Демонстрации.** Сравнение электропроводности растворов электролитов. Смещение равновесия диссоциации слабых кислот. Индикаторы и изменение их окраски в разных средах. Взаимодействие концентрированных азотной и серной кислот, а также разбавленной азотной кислоты с медью. Реакция «серебряного зеркала» для муравьиной кислоты. Взаимодействие аммиака и метиламина с хлороводородом и водой. Получение и свойства раствора гидроксида натрия. Получение мыла и изучение среды его раствора индикаторами. Гидролиз карбонатов, сульфатов и силикатов щелочных металлов, нитрата свинца(II) или цинка, хлорида аммония.

**Лабораторные опыты.** Реакции, идущие с образованием осадка, газа или воды, для органических и неорганических электролитов. Свойства соляной, разбавленной серной и уксусной кислот. Взаимодействие гидроксида натрия с солями: сульфатом меди(II) и хлоридом аммония. Получение и свойства гидроксида меди(II). Свойства растворов солей сульфата меди и хлорида железа(III). Исследование среды растворов с помощью индикаторной бумаги.

Практическая работа 7. Исследование свойств минеральных и органических кислот.

Практическая работа 8. Получение солей различными способами и исследование их свойств.

Практическая работа 9. Гидролиз органических и неорганических соединений.

## ТЕМА 6. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ПРОЦЕССЫ (9 ч)

**Окислительно-восстановительные реакции.** Понятие об окислительно-восстановительных реакциях. Степень окисления. Процессы окисления и восстановления. Важнейшие окислители и восстановители. Метод электронного баланса для составления уравнений окислительно-восстановительных реакций. Методы ионно-электронного баланса (метод полуреакций). Окислительно-восстановительные потенциалы.

**Электролиз.** Понятие электролиза как окислительно-восстановительного процесса, протекающего на электродах. Электролиз расплавов электролитов.

Электролиз растворов электролитов с инертными электродами. Электролиз растворов электролитов с и активным анодом. Практическое значение электролиза: электрохимическое получение веществ, электрохимическая очистка (рафинирование) металлов, гальванотехника, гальванопластика, гальванизация.

**Химические источники тока.** Гальванические элементы. Стандартный водородный электрод. Стандартные электродные потенциалы. Современные химические источники тока: батарейки и аккумуляторы.

**Коррозия металлов и способы защиты от неё.** Понятие о коррозии. Виды коррозии по характеру окислительно-восстановительных процессов: химическая и электрохимическая. Способы защиты металлов от коррозии: применение легированных сплавов, нанесение защитных покрытий, изменение состава или свойств коррозионной среды, электрохимические методы защиты.

**Демонстрации.** Восстановление оксида меди(II) углем и водородом. Восстановление дихромата калия этиловым спиртом. Окислительные свойства дихромата калия. Окисление альдегида в карбоновую кислоту (реакция «серебряного зеркала» или реакция с гидроксидом меди(II). Электролиз раствора сульфата меди(II). Составление гальванических элементов. Коррозия металлов в различных условиях и методы защиты от неё.

**Лабораторные опыты.** Взаимодействие металлов с неметаллами, а также с растворами солей и кислот. Взаимодействие концентрированных серной и азотной кислот с медью. Окислительные свойства перманганата калия в различных средах. Ознакомление с коллекцией химических источников тока (батарейки, свинцовые аккумуляторы и т. д.).

## ТЕМА 7. НЕМЕТАЛЛЫ (23 ч)

**Водород.** Двойственное положение водорода в периодической системе химических элементов: в I-A и VII-A группах. Изотопы водорода.

Нахождение в природе. Строение молекулы, физические свойства. Химические свойства водорода: восстановительные (с более электроотрицательными неметаллами, с оксидами металлов, гидрирование органических веществ) и окислительные (с металлами І-А и ІІ-А групп). Получение водорода: в лаборатории (взаимодействием кислот с металлами) и промышленности (конверсией). Применение водорода.

**Галогены.** Элементы VIIA-группы — галогены: строение атомов и молекул, галогены-простые вещества, соединения: сравнительная характеристика.

Галогены в природе. Закономерности изменения физических и химических свойств в VIIA-группе: взаимодействие галогенов с металлами, неметаллами, со сложными неорганическими и органическими веществами. Получение и применение галогенов.

Строение молекул и физические свойства галогеноводородов. Химические свойства галогеноводородных кислот: кислотные свойства, восстановительные свойства, взаимодействие с органическими веществами. Получение галогеноводородов. Галогениды. Качественные реакции на галогенид-ионы.

Оксиды хлора. Кислородсодержащие кислоты хлора. Соли кислородсодержащих кислот хлора. Получение и применение важнейших кислородных соединений хлора.

**Кислород.** Общая характеристика элементов VIA-группы.

Кислород: нахождение в природе, получение (лабораторные и промышленные способы) и физические свойства.

Химические свойства кислорода: окислительные (с простыми веществами, с низшими оксидами, с органическими и неорганическими веществами) и восстановительные (с фтором). Области применения.

Озон. Нахождение в природе. Физические и химические свойства озона. Его получение и применение. Роль озона в живой природе.

Строение молекулы пероксида водорода, его физические и химические свойства (окислительные и восстановительные). Получение и применение пероксида водорода.

**Сера.** Нахождение серы в природе. Валентные возможности атомов серы. Аллотропия серы. Физические свойства ромбической серы. Химические свойства серы: окислительные (с металлами, с водородом и с менее электроотрицательными неметаллами) и восстановительные (с кислородом, кислотами-окислителями), реакции диспропорционирования (со щелочами). Получение серы и области применения.

Строение молекулы и свойства сероводорода: физические, физиологические и химические. Сероводород, как восстановитель, его получение и применение. Сульфиды и их химические свойства. Распознавание сульфид-ионов.

Сернистый газ, его физические свойства, получение и применение. Химические свойства оксида серы(IV): восстановительные (с кислородом, бромной водой, перманганатом калия и сероводородом) и свойства кислотных оксидов со щелочами. Сернистая кислота и её соли.

Серный ангидрид, его физические свойства, получение и применение. Химические свойства оксида серы(VI), как окислителя и типичного кислотного оксида. Серная кислота: строение и физические свойства. Химические свойства разбавленной серной кислоты: окислительные и обменные и окислительные свойства концентрированной. Получение серной кислоты в промышленности. Области применения серной кислоты. Сульфаты, в том числе и купоросы. Гидросульфаты. Физические и химические свойства солей серной кислоты. Распознавание сульфат-анионов.

**Азот.** Общая характеристика элементов VA-группы. Азот. Строение атома. Нахождение в природе. Физические свойства. Окислительные и восстановительные свойства. Получение и применение азота.

Строение молекулы аммиака, его физические свойства. Образование межмолекулярной водородной связи. Химические свойства аммиака как восстановителя. Основные свойства аммиака как электонодонора. Комплексообразование с участием аммиака. Взаимодействие

аммиака с органическими веществами и с углекислым газом. Получение и применение аммиака. Соли аммония: строение молекул, физические и химические свойства, применение. Солеобразующие ( $N_2O_3$ ,  $NO_2$ ,  $N_2O_5$ ) и несолеобразующие ( $N_2O$ , NO) оксиды. Их строение, физические и химические свойства.

Азотистая кислота и её окислительно-восстановительная двойственность. Соли азотистой кислоты — нитриты. Строение молекулы и физические свойства азотной кислоты. Её химические свойства: кислотные и окислительные в реакциях с металлами и неметаллами, реакции со органическими и неорганическими соединениями. Получение азотной кислоты в промышленности и лаборатории и её применение. Нитраты (в том числе и селитры), их физические и химические свойства. Термическое разложение нитратов. Применение нитратов.

**Фосфор.** Строение атома и аллотропия фосфора. Физические свойства аллотропных модификаций и их взаимопереходы. Химические свойства фосфора: окислительные (с металлами), восстановительные (с более электроотрицательными неметаллами, кислотамиокислителями, бертолетовой солью) и диспропорционирования (со щелочами). Нахождение в природе и его получение. Фосфин, его строение и свойства.

Оксиды фосфора(III) и (V). Фосфорные кислоты, их физические и химические свойства. Получение и применение ортофосфорной кислоты. Соли ортофосфорной кислоты и их применение.

**Углерод.** Углерод — элемент IVA-группы. Аллотропные модификации углерода, их получение и свойства. Сравнение свойств алмаза и графита.

Химические свойства углерода: восстановительные (с галогенами, кислородом, серой, азотом, водой, оксидом меди(II), кислотами-окислителями) и окислительные (с металлами, водородом и менее электроотрицательными неметаллами). Углерод в природе.

Оксид углерода(II): строение молекулы, свойства, получение и применение.

Оксид углерода(IV): строение молекулы, свойства, получение и применение.

Угольная кислота и её соли: карбонаты и гидрокарбонаты, — их представители и применение.

**Кремний.** Кремний в природе. Получение и применение кремния. Физические и химические свойства кристаллического кремния: восстановительные (с галогенами, кислородом, растворами щелочей и плавиковой кислоты) и окислительные (с металлами). Оксид кремния(IV), его свойства. Кремниевая кислота и её соли. Силикатная промышленность.

Демонстрации. Получение водорода и его свойства. Коллекция «Галогены — простые вещества». Получение хлора взаимодействием перманганата калия с соляной кислотой. Получение соляной кислоты и её свойства. Окислительные свойства хлорной воды. Отбеливающее действие жавелевой воды. Горение спички. Взрыв петарды или пистонов. Получение кислорода разложением перманганата калия и нитрата натрия. Получение оксидов из простых и сложных веществ. Окисление аммиака с помощью индикатора и без него. Разложение пероксида водорода, его окислительные свойства в реакции с гидроксидом железа(II) и восстановительные свойства с кислым раствором перманганата калия. Горение серы. Взаимодействие серы с металлами: алюминием, цинком, железом. Получение сероводорода и сероводородной кислоты. Доказательство наличия сульфид-иона в растворе. Качественные реакции на сульфит-анионы. Свойства серной кислоты. Качественные реакции на сульфит- и сульфат-анионы. Схема промышленной установки фракционной перегонки воздуха. Получение и разложение хлорида аммония. Качественная реакция на ион аммония. Получение оксида азота(IV) реакцией взаимодействия меди с концентрированной азотной кислотой. Взаимодействие оксида азота(IV) с водой. Разложение нитрата натрия, горение чёрного пороха.

Горение фосфора, растворение оксида фосфора(V) в воде. Качественная реакция на фосфатанион. Коллекция минеральных удобрений. Коллекция природных соединений углерода. Кристаллические решётки алмаза и графита. Адсорбция оксида азота(IV) активированным углем. Восстановление оксида меди(II) углем. Ознакомление с коллекцией природных силикатов и продукцией силикатной промышленности. Получение кремниевой кислоты взаимодействием раствора силиката натрия с сильной кислотой, растворение кремниевой кислоты в щёлочи, разложение при нагревании.

**Лабораторные опыты.** Качественные реакции на галогенид-ионы. Ознакомление с коллекцией природных соединений серы. Качественная реакция на сульфат-анион. Получение углекислого газа, взаимодействие мрамора с соляной кислотой и исследование его свойств. Качественная реакция на карбонат-анион.

Практическая работа 10. Получение оксидов неметаллов и исследование их свойств.

Практическая работа 11. Получение газов и исследование их свойств.

## **ТЕМА 8. МЕТАЛЛЫ (16 ч)**

**Щелочные металлы.** Положение щелочных металлов в периодической системе элементов Д. И. Менделеева и строение их атомов. Закономерности изменения физических и химических свойств в зависимости от атомного номера металла (изменение плотности, температур плавления и кипения, реакций с водой). Единичное, особенное и общее в реакциях с кислородом, другими неметаллами, жидким аммиаком, органическими и неорганическими кислотами и др. соединениями. Нахождение в природе, их получение и применение.

Оксиды, их получение и свойства. Щёлочи, их свойства и применение.

Соли щелочных металлов, их представители и значение.

Металлы ІБ-группы: медь и серебро. Строение атомов меди и серебра.

Физические и химические свойства этих металлов, их получение и применение. Медь и серебро в природе.

Свойства и применение важнейших соединений: оксидов меди(I) и (II), серебра(I); солей меди(II) (хлорида и сульфата) и серебра (фторида, нитрата, хромата и ацетата).

**Бериллий, магний и щёлочноземельные металлы.** Положение в периодической системе элементов Д. И. Менделеева и строения атомов металлов IIA-группы. Нахождение в природе, получение, физические и химические свойства, применение щёлочноземельных металлов и их важнейших соединений (оксидов, гидроксидов и солей).

Временная и постоянная жёсткость воды и способы устранения каждого из типов. Иониты.

**Цинк.** Положение в периодической системе элементов Д. И. Менделеева и строения атомов цинка. Его физические и химические свойства. Нахождение в природе, получение и применение цинка.

Оксид, гидроксид и соли цинка: их свойства и применение.

**Алюминий.** Положение в периодической системе элементов Д. И. Менделеева и строения атомов алюминия. Его физические и химические свойства. Нахождение в природе, получение и применение алюминия.

Оксид, гидроксид и соли алюминия (в которых алюминий находится в виде катиона и алюминаты): их свойства и применение. Органические соединения алюминия.

**Хром.** Положение в периодической системе элементов Д. И. Менделеева и строения атомов хрома. Его физические и химические свойства. Нахождение в природе, получение и применение хрома.

Свойства, получение и применение важнейших соединения хрома: оксидов и гидроксидов хрома, дихроматов и хроматов щелочных металлов.

Зависимость кислотно-основных свойств оксидов и гидроксидов хрома от степени его окисления. Хроматы и дихроматы, их взаимопереходы и окислительные свойства.

**Марганец.** Положение в периодической системе элементов Д. И. Менделеева и строения атомов марганца. Его физические и химические свойства. Нахождение в природе, получение и применение марганца.

Получение, свойства и применение важнейших соединений марганца: оксидов и гидроксидов, солей марганца в различной степени окисления. Соли марганца(VII), зависимость их окислительных свойств от среды раствора.

**Железо.** Положение в периодической системе элементов Д. И. Менделеева и строения атомов железа. Его физические и химические свойства. Нахождение в природе, получение (чугуна и стали) и применение железа. Получение, свойства и применение важнейших соединений железа(II) и (III): оксидов, гидроксидов, солей. Комплексные соединения железа.

Демонстрации. Образцы щелочных металлов. Взаимодействие щелочных металлов с водой. Реакция окрашивания пламени солями щелочных металлов. Образцы металлов IIA-группы. Взаимодействие кальция с водой. Горение магния в воде и твёрдом углекислом газе. Качественные реакции на катионы магния, кальция, бария. Реакции окрашивания пламени солями металлов IIA-группы. Получение жёсткой воды и устранение жёсткости. Получение и исследование свойств гидроксида хрома(III). Окислительные свойства дихромата калия. Окислительные свойства перманганата калия. Лабораторные опыты. Качественные реакции на катионы меди и серебра

Получение и исследование свойств гидроксида цинка. Взаимодействие алюминия с растворами кислот и щелочей. Получение и изучение свойств гидроксида алюминия. Коллекция железосодержащих руд, чугуна и стали. Получение нерастворимых гидроксидов железа и изучение их свойств. Получение комплексных соединений железа.

**Практическая работа 12.** Решение экспериментальных задач по теме «Получение соединений металлов и исследование их свойств».

**Практическая работа 13.** Решение экспериментальных задач по темам: «Металлы» и «Неметаллы».

## 3. Тематическое планирование

Тематическое планирование составлено к учебнику О.С. Габриеляна, И.Г. Остроумова,, С.Ю. Пономарева, «Химия. Углубленный уровень. 10 класс: учебник для учащихся общеобразовательных организаций/. - М.: Дрофа, 2019.

## **10 класс**

| No         |                                                                                           | Кол –во часов |
|------------|-------------------------------------------------------------------------------------------|---------------|
| $\Pi/\Pi$  | Тема урока                                                                                |               |
|            | ТЕМА 1. НАЧАЛЬНЫЕ ПОНЯТИЯ ОРГАНИЧЕСКОЙ ХИМИИ                                              | 13 ч.:        |
| 1          | Предмет органической химии. Органические вещества                                         | 1             |
| 2-3        | Теория строения органических соединений А. М. Бутлерова                                   | 2             |
| 4          | Концепция гибридизации атомных орбиталей                                                  | 1             |
| 5 -6       | Классификация органических соединений                                                     | 2             |
| 7 -8       | Принципы номенклатуры органических соединений                                             | 2             |
| 9 -10      | Классификация реакций в органической химии                                                | 2             |
| 11         | Практическая работа 1                                                                     | 1             |
| 12         | Обобщение и систематизация знаний по классификации и номенклатуре органических соединений | 1             |
| 13         | Контрольная работа 1 по теме: «Классификация и номенклатура органических соединений»      | 1             |
|            | ТЕМА 2. ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ                                                           | 5 ч.:         |
| 14         | Алканы: строение молекул, гомологический ряд, изомерия и номенклатура                     | 1             |
| 15         | Способы получения алканов                                                                 | 1             |
| 16 -<br>17 | Свойства алканов и их применение                                                          | 2             |
| 18         | Циклоалканы                                                                               | 1             |
|            | ТЕМА 3. НЕПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ                                                         | 13ч.:         |
| 19         | Алкены: гомологический ряд, изомерия и номенклатура                                       | 1             |
| 20         | Способы получения алкенов                                                                 | 1             |
| 21 -<br>22 | Свойства и применение алкенов                                                             | 2             |
| 23         | Практическая работа 2                                                                     | 1             |
| 24         | Основные понятия химии высокомолекулярных соединений                                      | 1             |
| 25         | Алкадиены: классификация и строение                                                       | 1             |
| 26 -<br>27 | Способы получения, свойства и применение алкадиенов.                                      | 2             |
| 28         | Каучуки и резины                                                                          | 1             |
| 29 -<br>30 | Алкины: строение молекул, изомерия, номенклатура, гомологический ряд, и способы получения | 2             |
| 31         | Свойства и применение алкинов                                                             | 1             |
|            | ТЕМА 4. АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ                                                        | 7 ч.:         |
| 32         | Арены: строение молекул, гомологический ряд, изомерия и номенклатура                      | 1             |
| 33         | Способы получения аренов                                                                  | 1             |
| 34         | Свойства бензола                                                                          | 1             |
| 35         | Свойства гомологов бензола. Применение аренов                                             | 1             |
| 36 -<br>37 | Обобщение и систематизация знаний по углеводородам                                        | 2             |
| 38         | Контрольная работа 2 по темам «Предельные углеводороды»,                                  | 1             |

|      | «Непредельные углеводороды», «Арены»                            |        |
|------|-----------------------------------------------------------------|--------|
|      | ТЕМА 5. ПРИРОДНЫЕ ИСТОЧНИКИ УГЛЕВОДОРОДОВ                       | 5 ч.:  |
| 39   | Природный газ и попутный нефтяной газ                           | 1      |
| 40   | Нефть                                                           | 1      |
| 41   | Промышленная переработка нефти                                  | 2      |
| 42   | Каменный уголь. Промышленная переработка каменного угля.        | 1      |
|      | ТЕМА 6. ГИДРОКСИЛСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ                        | 11 ч.: |
|      | ВЕЩЕСТВА                                                        |        |
| 43   | Спирты: классификация и строение                                | 1      |
| 44   | Гомологический ряд алканолов: изомерия и номенклатура           | 1      |
| 45   | Способы получения спиртов                                       | 1      |
| 46   | Свойства спиртов                                                | 1      |
| 47   | Применение спиртов. Отдельные представители алканолов           | 1      |
| 48   | Многоатомные спирты                                             | 1      |
| 49   | Практическая работа 3                                           | 1      |
| 50   | Фенолы                                                          | 1      |
| 51   | Свойства и применение фенолов                                   | 1      |
| 52   | Обобщение и систематизация знаний по спиртам и фенолу           | 1      |
| 53   | Контрольная работа 3 по теме «Спирты и фенолы»                  | 1      |
|      | ТЕМА 7. АЛЬДЕГИДЫ И КЕТОНЫ                                      | 7 ч.:  |
| 54   | Альдегиды: гомологический ряд, изомерия и номенклатура          | 1      |
| 55   | Способы получения альдегидов                                    | 1      |
| 56-  | Свойства и применение альдегидов                                | 2      |
| 57   | 1                                                               |        |
| 58   | Кетоны: гомологический ряд, изомерия и номенклатура. Способы    | 1      |
|      | получения кетонов                                               |        |
| 59   | Свойства и применение кетонов                                   | 1      |
| 60   | Практическая работа 4                                           | 1      |
|      | ТЕМА 8. КАРБОНОВЫЕ КИСЛОТЫ И ИХ ПРОИЗВОДНЫЕ                     | 13 ч.: |
| 61   | Карбоновые кислоты: классификация и строение                    | 1      |
| 62   | Предельные одноосновные карбоновые кислоты                      | 1      |
| 63   | Способы получения карбоновых кислот                             | 1      |
| 64 - | Свойства предельных одноосновных карбоновых кислот              | 2      |
| 65   |                                                                 |        |
| 66   | Важнейшие представители карбоновых кислот и их применение       | 1      |
| 67   | Соли карбоновых кислот. Мыла                                    | 1      |
| 68   | Сложные эфиры                                                   | 1      |
| 69   | Воски и жиры                                                    | 1      |
| 70 - | Практическая работа 5                                           | 2      |
| 71   |                                                                 |        |
| 72   | Обобщение и систематизация знаний по альдегидам, кетонам,       | 1      |
|      | карбоновым кислотам, сложным эфирам и жирам                     |        |
| 73   | Контрольная работа 4 по темам «Альдегиды и кетоны», «Карбоновые |        |
|      | кислоты и их производные»                                       |        |
|      | ТЕМА 9. УГЛЕВОДЫ                                                | 10     |
| 74   | Углеводы: строение и классификация                              | 1      |
| 75 - | Моносахариды. Пентозы                                           | 2      |
| 76   |                                                                 |        |
| 77   | Моносахариды. Гексозы                                           | 1      |
| 78   | Дисахариды                                                      | 1      |
| 79   | Полисахариды. Крахмал                                           | 1      |
| 80   | Целлюлоза                                                       | 1      |

| 81   | Практическая работа 6                                     | 1      |
|------|-----------------------------------------------------------|--------|
| 82   | Обобщение и систематизация знаний по углеводам            | 1      |
| 83   | Контрольная работа 5 по теме «Углеводы»                   | 1      |
|      | ТЕМА 10. АЗОТСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ                      | 14 ч.: |
|      | СОЕДИНЕНИЯ                                                |        |
| 84   | Амины: классификация, строение, изомерия и номенклатура   | 1      |
| 85   | Способы получения аминов                                  | 1      |
| 86   | Свойства и применение аминов                              | 1      |
| 87   | Аминокислоты: строение молекул, классификация и получение | 1      |
| 88   | Свойства и применение аминокислот                         | 1      |
| 89   | Белки                                                     | 1      |
| 90   | Практическая работа 7                                     | 1      |
| 91   | Нуклеиновые кислоты                                       | 1      |
| 92   | Обобщение и систематизация знаний по азотсодержащим       | 1      |
|      | органическим соединениям                                  |        |
| 93   | Амины: классификация, строение, изомерия и номенклатура   | 1      |
| 94   | Контрольная работа 6 по теме «Азотсодержащие органические | 1      |
|      | соединения»                                               |        |
| 95   | Практическая работа 8                                     | 1      |
| 96   | Обобщение знаний по курсу органической химии              | 1      |
| 97   | Итоговая контрольная работа по курсу органической химии   | 1      |
| 98 - | Резервное время                                           | 5      |
| 102  |                                                           |        |
|      | Итого                                                     | 102 ч. |

## <u>11 класс</u>

| $N_{\underline{0}}$  |                                                                                                           | Кол -во часов |
|----------------------|-----------------------------------------------------------------------------------------------------------|---------------|
| $\Pi \backslash \Pi$ | Тема урока                                                                                                |               |
|                      | ТЕМА 1. СТРОЕНИЕ АТОМА. ПЕРИОДИЧЕСКИЙ ЗАКОН И ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д. И. МЕНДЕЛЕЕВА | 10 ч.:        |
| 1                    | Строение атома                                                                                            | 1             |
| 2                    | Строение атомного ядра. Изотопы. Ядерные реакции                                                          | 1             |
| 3                    | Состояние электронов в атоме.                                                                             | 1             |
| 4 -5                 | Электронные конфигурации атомов                                                                           | 2             |
| 6                    | Строение атома и периодический закон Д. И. Менделеева                                                     | 1             |
| 7                    | Положения элемента в периодической системе и его свойства.                                                | 1             |
|                      | Значение периодического закона                                                                            |               |
| 8                    | Обобщение и систематизация знаний по теме «Строение атома.                                                | 1             |
|                      | Периодический закон и периодическая система химических                                                    |               |
|                      | элементов                                                                                                 |               |
|                      | Д. И. Менделеева»                                                                                         |               |
| 9                    | Строение атома и периодический закон Д. И. Менделеева                                                     | 1             |
| 10                   | Контрольная работа 1 по теме «Строение атома. Периодический                                               | 1             |
|                      | закон и периодическая система химических элементов                                                        |               |
|                      | Д. И. Менделеева»                                                                                         |               |
|                      | ТЕМА 2. ХИМИЧЕСКАЯ СВЯЗЬ И СТРОЕНИЕ ВЕЩЕСТВА                                                              | 10 ч.:        |
| 11                   | Ионная химическая связь                                                                                   | 1             |
| 12                   | Ковалентная химическая связь и механизмы её образования                                                   | 1             |
| 13                   | Комплексные соединения                                                                                    | 1             |

| 14   | Классификация и номенклатура комплексных соединений,            | 1      |
|------|-----------------------------------------------------------------|--------|
|      | диссоциация их в растворах. Значение комплексных соединений     |        |
| 15   | Металлическая химическая связь                                  | 1      |
| 16   | Агрегатные состояния веществ и фазовые переходы                 | 1      |
| 17   | Межмолекулярные взаимодействия. Водородная связь                | 1      |
| 18   | Практическая работа 1                                           | 1      |
| 19   | Обобщение и систематизация знаний по теме «Химическая связь и   | 1      |
|      | строение вещества»                                              |        |
| 20   | Контрольная работа 2 по теме «Химическая связь и строение       | 1      |
|      | вещества»                                                       |        |
|      | ТЕМА 3. ДИСПЕРСНЫЕ СИСТЕМЫ И РАСТВОРЫ                           | 9 ч.:  |
| 21   | Дисперсные системы и их классификация                           | 1      |
| 22   | Грубодисперсные системы                                         | 1      |
| 23   | Тонкодисперсные системы                                         | 1      |
| 24 - | Растворы. Концентрация растворов и способы её выражения         | 2      |
| 25   |                                                                 |        |
| 26   | Практическая работа 2                                           | 1      |
| 27   | Практическая работа 3                                           | 1      |
| 28   | Обобщение и систематизация знаний по теме «Дисперсные системы и | 1      |
|      | растворы»                                                       |        |
| 29   | Контрольная работа 3 по теме «Дисперсные системы и              | 1      |
|      | растворы»                                                       |        |
|      | ТЕМА 4. ЗАКОНОМЕРНОСТИ ПРОТЕКАНИЯ ХИМИЧЕСКИХ                    | 9 ч.:  |
|      | РЕАКЦИЙ И ФИЗИКО-ХИМИЧЕСКИХ ПРОЦЕССОВ                           |        |
| 30   | Основы химической термодинамики. Понятие об энтальпии           | 1      |
| 31-  | Определение тепловых эффектов химических реакций. Закон Гесса   | 2      |
| 32   |                                                                 |        |
| 33   | Направление протекания химических реакций. Понятие об энтропии  | 1      |
| 34   | Скорость химических реакций                                     | 1      |
| 35   | Факторы, влияющие на скорость гомогенных и гетерогенных         | 1      |
|      | реакции                                                         |        |
| 36   | Катализ и катализаторы                                          | 1      |
| 37   | Химическое равновесие                                           | 1      |
| 38   | Практическая работа 4                                           | 1      |
|      | ТЕМА 5. ХИМИЧЕСКИЕ РЕАКЦИИ В ВОДНЫХ РАСТВОРАХ                   | 12 ч.: |
| 39   | Вода как слабый электролит. Водородный показатель. Свойства     | 1      |
|      | растворов электролитов                                          |        |
| 40   | Кислоты и основания с позиции разных представлений и теорий.    | 1      |
|      | Протолитическая теория                                          |        |
| 41   | Неорганические и органические кислоты в свете теории            | 1      |
|      | электролитической диссоциации и протолитической теории          |        |
| 42   | Практическая работа 5                                           | 1      |
| 43   | Неорганические и органические основания в свете теории электро- | 1      |
|      | литической диссоциации и протолитической теории                 |        |
| 44   | Соли в свете теории электролитической диссоциации               | 1      |
| 45   | Практическая работа 6                                           | 1      |
| 46   | Гидролиз неорганических соединений                              | 2      |
| 47 - | Практическая работа 7                                           | 1      |
| 48   |                                                                 |        |
| 49   | Обобщение и систематизация знаний по темам «Закономерности      | 1      |
|      | протекания химических реакций и физико-химических процессов» и  |        |
|      | «Химические реакции в водных растворах»                         |        |

| _ ~  |                                                                |        |
|------|----------------------------------------------------------------|--------|
| 50   | Контрольная работа 4 по темам «Закономерности протекания       | 1      |
|      | химических реакций и физико-химических процессов»              |        |
|      | и «Химические реакции в водных растворах»                      |        |
|      | ТЕМА 6. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ ПРОЦЕССЫ                | 9 ч.:  |
| 51 - | Окислительно-восстановительные реакции и методы составления их | 3      |
| 53   | уравнений                                                      |        |
| 54 - | Электролиз                                                     | 2      |
| 55   | •                                                              |        |
| 56   | Химические источники тока                                      | 1      |
| 57   | Коррозия металлов и способы защиты от неё                      | 1      |
| 58   | Обобщение и систематизация знаний по теме «Окислительно-       | 1      |
|      | восстановительные процессы»                                    |        |
| 59   | Контрольная работа 5 по теме «Окислительно-                    | 1      |
|      | восстановительные процессы»                                    |        |
|      | ТЕМА 7. НЕМЕТАЛЛЫ                                              | 23 ч.: |
| 60   | Водород                                                        | 1      |
| 61   | Галогены                                                       | 1      |
| 62   | Галогеноводороды и галогеноводородные кислоты. Галогениды      | 1      |
| 63   | Кислородные соединения хлора                                   | 1      |
| 64   | Кислород и озон                                                | 1      |
| 65   | Пероксид водорода                                              | 1      |
| 66   | Cepa                                                           | 1      |
| 67   | Сероводород и сульфиды                                         | 1      |
| 68   | Оксид серы (IV), сернистая кислота и её соли                   | 1      |
| 69   | Оксид серы(VI). Серная кислота и её соли                       | 1      |
| 70   | Азот                                                           | 1      |
| 71   | Аммиак. Соли аммония                                           | 1      |
| 72   | Оксиды азота. Азотистая кислота и нитриты                      | 1      |
| 73   | Азотная кислота и нитраты                                      | 1      |
| 74   | Фосфор и его соединения                                        | 2      |
| 75-  | Углерод и его соединения                                       | 2      |
| 76   |                                                                |        |
| 77-  | Кремний и его соединения                                       | 1      |
| 78   |                                                                |        |
| 79   | Практическая работа 8                                          | 1      |
| 80   | Практическая работа 9                                          | 1      |
| 81   | Обобщение и систематизация знаний по теме «Неметаллы»          | 1      |
| 82   | Контрольная работа 6 по теме «Неметаллы»                       | 1      |
|      | ТЕМА 8. МЕТАЛЛЫ                                                | 16 ч.: |
| 83   | Щелочные металлы                                               | 1      |
| 84   | Металлы ІБ-группы: медь и серебро                              | 1      |
| 85   | Бериллий, магний и щёлочноземельные металлы                    | 1      |
| 86   | Жесткость воды и способы её устранения                         | 1      |
| 87   | Цинк                                                           | 1      |
| 88   | Алюминий и его соединения                                      | 1      |
| 89   | Хром и его соединения                                          | 1      |
| 90   | Марганец                                                       | 1      |
| 91   | Железо и его соединения                                        | 1      |
| 92   | Практическая работа 10                                         | 1      |
| 93   | Практическая работа 11                                         | 1      |
| 94-  | Обобщение и систематизация знаний по теме «Металлы»            | 2      |

| 95  |                                                        |   |
|-----|--------------------------------------------------------|---|
| 96  | Контрольная работа 7 по теме «Металлы»                 | 1 |
| 97  | Обобщение и систематизация знаний по курсу общей химии | 1 |
| 98  | Итоговая контрольная работа по курсу общей химии       | 1 |
| 99- | Резервное время                                        | 4 |
| 102 |                                                        |   |